
I AD-A259 925

iAnnual Technical Report #2
I November 1, 1991-October 31, 1992

I New Micro- and Macroscopic Models

i of Contact and Friction

W W. Tworzydlo, W. Cecot, J. T. Oden, and C. H. Yew

TR-92-15i .November 1992

Contract F49620-91-C-0011

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Building 410
I Bolling Air Force Base, DC 20332-6448

I =Computational Mechanics Company, Inc.
S,,7701 North Lamar, Suite 200

I ~rs~m ~ cl@~~..Austin, TX 78752
V~IOU05 Ali DTIC erdzt

*~~nc 0 .41 . black god



REPORT DOCUMENTATION PAGE
Public reporting burden for this collection of information is estimated to average I hour per response. induding the time for reviewing inswuctons, searching existing data sources,
5athertng and maiftaining the data needed, and completing and raviewing the collection o. information. Seed comantas, regarding this burden estimate or any other aspect of this
fiatclo: ofi inforation. incdra ind suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
)evis Hfghinhwy Sute 1204, Arlington. VA 222024302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188L Washington. DC 20503.

I. AGENCY USE ONLY (I.ga blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 25, 1992 Annual, Nov. 1, 1991-Oct. 31, 1992
4. TITLE AND SUBTITLE 5. FUNDINGNUMBERS

New Micro- and Macroscopic Models of Contact and Friction C.-
__________________________________ C-F49620-91 -C-0011I

6. AUTHORS PR-2304/A3-2302/C2

W.W. Tworzydlo, W. Cecot, J.T. Oden, and C. H. Yew TA-OOO1AA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

The Computational Mechanics Co., Inc.
7701 North Lamar, Suite 200 TR-92-15
Austin, TX 78752

9. SPONSORING / MONITORING AGENCY NAIME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

The -Air Force Office of Scientific Research

Building 410 UNKNOWN
Boiling AFB, DC 20332-6448

II. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEiENT 12b. DISTRIBUTION CODE

.for V•.•'3 ,I release;

13. ABSTRACT (Max-croen 200 words)

This report summarizes work in the second year of a project devoted to the development of new
asperity-based models of frictional interfaces. The main concept is to combine statistical homogenization
methods with a realistic nonlinear finite element analysis of surface asperities, and thus produce new
asperity-based models of contact and friction.
h The research in the first year of the project provided a complete theory and software for statistical
homogenization of random surface parameters.

In the second year of the project, the effort focused on the development of a finite element code for
S modeling of nonelastic surface asperities, as well as on the design and performance of the verification
experiment. The asperity modeling code is based on an hp adaptive finite element kernel, with object-
based data structure, error esitmation and graphic user interface. The code is capable of modeling elastic
and elasto-viscoplastic solids in contact with a rigid flat. In parallel with the code development, an
experiment was designed and performed for custom-made asperities in contact with rigid surfaces. The
results of these experiments compare favorably with numerical predictions of the finite element method.
Finally, the results of the finite element analysis were used to construct the first asperity-bsaed contact
model of random surface. This work will continue in the next year.

14. SUBJE•T TERMS 15. NUMBER OF PAGES

contact, friction, asperity, adhesion, interface, finite elements, viscoplastic 98
16. PRICE CODE

* N/A

17. SECURJTY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OP REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL



Annual Technical Report #2

November 1, 1991-October 31, 1992

* New Micro- and Macroscopic Models
* of Contact and Friction
I

W. W. Tworzydlo, W. Cecot, J. T. Oden, and C. H. YewI

TR-92-15
November 1992

Contract F49620-91-C-0011

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Building 410

Boiling Air Force Base, DC 20332-6448

I

I Computational Mechanics Company, Inc.
7701 North Lamar, Suite 200

I Austin, TX 78752



Contents

1 Introduction 1

1.1 Summary of Objectives of the Project ............................ 2

1.2 Research Progress ........................................ 2

1.3 Outline of the Report ......... ............................... 3

1.4 Presentations and Publications ........ ......................... 4

2 Asperity-Based Models of Contact and Friction 5

2.1 Microstructure of the Frictional Interface .......................... 10

2.2 Statistics of a Random Surface ....................... ........ .. 14

2.3 Calculation of Surface Statistics From Profile Data ..... .............. 16

2.3.1 Profiles on Gaussian Isotropic Surfaces ...................... 16

2.3.2 Profiles on Gaussian Anisotropic Surfaces ...................... 19

2.4 Calculation of Asperity Statistics From Surface Statistics ............... 20

2.4.1 Asperity Statistics for Gaussian Isotropic Surfaces ............... 20

2.4.2 Asperity Statistics for Gaussian Anisotropic Surfaces ............. 21

2.4.3 Asperity Statistics for Deterministic Surfaces ................... 21

2.5 Calculation of Macrocontact Expectations of Interface Parameters ...... .. 24

2.5.1 Expectation Calculation for Gaussian Isotropic Surfaces ........ ... 26

2.5.2 Expectation Calculation for Random Anisotropic Surfaces ...... ... 27

2.5.3 Expectation Calculation for Deterministic Surfaces .............. 29

2.6 Numerical Verification of Statistical Postprocessing ................... 29

3 Deformation Mechanics of a Single Asperity 29

3.1 Momentum and Geometric Equations ............................. 29

3.2 Constitutive Equations ........ .............................. 30

3.2.1 Linearly Elastic Constitutive Models ...... .................. 30

3.2.2 Elasto-Viscoplastic Constitutive Model With Damage ......... ... 31

3.3 Boundary Conditions ........ ............................... 34

3.3.1 Support Conditions ........ ............................ 34

3.3.2 Contact Condition ........ ............................ 35

3.3.3 Adhesion ........................................... 36

3.3.4 Shear Resistance ........ ............................. 36

3.3.5 Initial Conditions ........ ............................. :37



I 3.4 Variational Formulation ........ ............................. 40

3.5 Solution Method for Elastic Contact Problems ...................... 42

3.6 Solution Method for Viscoplastic Contact Problems ................... 44

4 Finite Element Analysis of Contact Problems with Friction 46
4.1 General Information About the 3D Finite Element Code ............... 46

4.2 Formulation of a Structural Deformation Problem in the 3D Code ...... .. 52

5 Basic Verification of Numerical Models 53

I 6 Verification of Numerical Models of Asperity 61

6.1 Elastic Sphere in Contact with a Rigid Flat ...... .................. 61

6.2 Experimental Studies of Models of Asperity ...... .................. 68

6.2.1 The Test Apparatus ...... ............................ 683 6.2.2 Tests Results From the Above Apparatus ...................... 70

6.2.3 Deformation of Asperities Under a Larger Normal Load ........ ... 703 6.3 Numerical Simulation of Experimental Measurements ................. 76

6.3.1 Viscoplastic Uniaxial Stress State Numerical Test ............... 76

6.3.2 Viscoplastic Cylindrical Asperity ....... ................... 79

6.3.3 Viscoplastic Custom Surface Model ......................... 79

3 7 A Simple Asperity-Based Contact Model 88

8 Conclusions and Research Forecast 90

9 References 91I
3 DTIC QUALa::"Y UIZC:1=CTED 5

Sooeusion For

NTIS OQRA&IDTIC TAB
Unelwounced 3

Ju Dstification/

Availability Codes

3Dit Specia

IS



List of Figures

2.1 A general classification of surfaces ............................... 8

2.2 Flowchart for statistical homogenization of interfaces ................... 9

2.3 Contacting bodies and coupons near the contact interface subjected to an
average stress vector of magnitude E .............................. 12

2.4 (a) Profiles of opposing rough surfaces, and (b) microtopography of surfaces
and the equivalent sum surface z ......... ......................... 13

2.5 Mechanical difference between asperity behavior and sum surface model. . . 15

2.6 Sampling of profilometric data ................................. 18

2.7 Typical asperity: (a) isotropic random surface, (b) anisotropic random surface. 22

2.8 Sampling of arbitrary surface .................................. 23

2.9 Accumulation of joint probability density f,,,,(zp, tc) for arbitrary surfaces. .. 25

2.10 Numerical integration of expectation value E(X) ................... 28

3.11 Penalty function for contact condition ........................... 38

3.12 Surface asperity in contact with a rigid fiat (a section) ................. 39

3.13 A regularization function 0 ................................... 40

3.14 Graphical presentation of construction of a series u0 , U1, U2,... convergent to
a solution u* of equation f (u) = 0 ............................... 43

4.15 A general finite element code structure ........................... 47

4.16 Vectorization and parallelizaton for groups and colors ................. 49

4.17 Sample screen with interactive window environment ................. 51

5.18 Adaptive timestepping algorithm for viscoelastoplastic evolution problems. .55

5.19 Experimental and numerical results of uniaxial tension (incorrect value of
Young modulus) .......................................... 56

5.20 Experimental and numerical results of uniaxial tension of a specimen with
corrected Young modulus ............................ 57

5.21 Cyclic loading test of the viscoplastic model - 10 cycles .............. 58

5.22 Relaxation test of the viscoplastic model ........................ 59

5.23 Creep test of the viscoplastic model ............................. 60

6.24 Refined mesh for the Hertz problem, w = .02, deformed configuration. Only
boundary elements shown .................................... 62

6.25 Isosurfaces of the vertical displacement for the Hertz problem, w=.02 . . .. 63

6.26 Isosurfaces of the ao, for the Hertz problem, w=.02 ................ 65

6.27 Distribution of error indicator for the Hertz problem, w = .02 ............ 66

6.28 Comparison of theoretical and numerical results for the Hertz problem . . 67

iii



6.29 Comparison of theoretical and numerical results for the Hertz problem; (a)
displacement versus contact area, and (b) displacement versus contact load . 69

6.30 A sketch of test apparatus (not to scale) .......................... 71

6.31 Different models of asperities studied experimentally ................ 7

6.32 Load-displacement curve for V-shaped asperity ................... 73

6.33 Load-displacement curve for truncated asperity ...... ................ 74

6.34 Load-displacement curve for cylindrical asperity ..................... 7.5

6.35 A photograph of deformed asperity ............................ 76

6.36 A compressive stress-strain curve for aluminum ...... ................ 77

6.37 A tensile stress-strain curve for aluminum ................... 78

6.38 Comparison of stress-strain relation behavior for uniaxial tension test...... 81

6.39 Original discretization of the cylinder .......................... 2

6.40 Refined discretization of the cylinder ....... ..................... 82

6.41 Numerical results for the cylinder .............................. 83

6.42 Comparison of numerical and experimental results for the cylinder ........ 83

6.43 Original discretization of the second specimen (truncated V-shaped asperity) 84

6.44 Refined discretization of the second specimen ...................... 84

6.45 Deformation of the second specimen ............................ .S5

6.46 Numerical results for the second specimen ...... ................... 86

6.47 Numerical and experimental results for the second specimen ............. $7

7.48 Comparison of Greenwood-Williamson theory with numerical predictions: (a)
load-separation curve and (b) load-area curve ........................ 89

iv



1 Introduction

Friction and rubbing of materials are among the most common phenomena in mechanics,
present whenever two solid bodies come into contact. They are responsible for a variety of
occurrences in everyday life. Some of them, such as tire traction, are very useful; others, like
violin music, are asthetic and pleasing, and many others, such as noises, vibrations, and wear,
are extremely unpleasant and dilatorius to mechanical systems. This common occurrence
of friction and the diversity of its effects underscore the extreme importance of a deep
understanding, modeling, and the control of friction phenomena. It is well known, however,
that the phenomena of contact and friction of solid bodies are among the most complex
and difficult to model of all mechanical events, primarily due to the complex structure of
engineering surfaces, the severe elasto-plastic deformation, damage, heat generation, atomic-
range interactions that take place on typical contact surfaces, the presence of contaminants,
lubrication, and even chemical reactions on these contact surfaces.

Efforts toward an understanding of frictional phenomena and of modeling friction began
with the historical works of Amontons [2] and Coulomb [321 over two centuries ago. Since
then, an extensive body of experimental and theoretical work has accumulated on general
tribology and a good empirical understanding of the subject exists today. However. the
progress in formulating a theoretical background and models of frictional interfaces have
been much slower to evolve than experimental investigations. Although considerable progress
in this direction has been made in recent years, there are still several issues that need
to be resolved in order to model friction and predict frictional phenomena with practical
reliability. One of the most difficult problems encountered is the estimation of material
constants occurring in the new constitutive models of frictional interfaces. These difficulties
reflect an urgent need for constructing new constitutive models of contact and friction and
for estimating the necessary material coefficients.

Presently there are two basic approaches for the development of mechanical constitutive
models of friction and two resulting types of frictional interface models which appear to be
the most promising. There are:

1. phenomenological models based primarily on experimental observations, and

2. asperity-based models, formulated via a theoretical analysis and statistical homoge-
nization of the microscale deformation of surface asperities in contact with an opposing
surface.

Unfortunately, to date none of these approaches has produced completely satisfactory
results. It is well known that experimental results depend strongly on the characteristics of
the test apparati, so the results of different tests on the same sample can be considerably
scattered. Moreover, these macroscopic experimental measurements do not provide sufficient
insight into the nature of the phenomena occurring on the contacting surfaces, severity of
the deformation, propagation of damage, etc. Such an insight can be provided by asperity-
based models, which are based on the microscale analysis of deformation and the relative



sliding of surface asperities. However, predictions made using classical or existing asperity-
based models are not generally applicable to the environments normally met in engineering
applications. The main reason is that these classical models are based on analytical, closed-
form solutions of the deformation of a surface asperity, which require gross simplifications of
geometry of the asperity and of the constitutive models of the contacting materials (elastic,
plastic, or at most elasto-plastic).

1.1 Summary of Objectives of the Project

In this project, a new approach for constructing constitutive models of frictional interfaces is
under development, which promises to provide a realistic link between microscale phenomena
occurring on contacting surfaces and macroscale phenomenological models of the interface.
This approach involves the use of special finite element methods in the modeling of complex
deformations of asperities of arbitrary shape, with realistic nonlinear constitutive models of
the contacting materials. The technical approach for the evaluation of the microasperity-
based models of contact and friction consists of two stages:

1. Apply the finite element technique to the analyze the nonlinear mechanical responses
of surface asperities of different heights, shapes, and with general viscoelastoplastic3 material properties and with material damage.

2. Apply statistical homogenization techniques to evaluate macroscopic, phenomenologi-3 cal constitutive models of the interface.

The approach being developed here should provide a means for generating a variety of3 new and useful models of frictional interfaces. Depending on the selected level of complexity
of the model of the asperity, a viscoelastoplastic, hyperelastic, or brittle material can be
considered, evolution of damage of the surface can be modeled, and effects of lubrication3 and surface contamination can be taken into account.

3 1.2 Research Progress

The results of the first year of effort on this project included a complete formulation of the3 theory and a corresponding software package for statistical homogenization of the interface
parameters.

in the second year of the project the effort has focused on the development of a finite
element code for modeling the nonelastic surface asperities, as well as on the design and
performance of the verification experiments, followed by initial verifications of the numerical
models for the surface asperities. In particular, the following tasks were completed during
the second year:

1. development of a three-dimensional adaptive finite element code for the analysis of
surface asperities in contact with opposing surfaces. The starting point for this effort

I



I
was an existing in-house finite element kernel, which was extended and customized to
satisfy the objectives of this project. Our effort during the last year has been focused
on the implementation of elastic and viscoplastic three-dimensional solid models, the
development of contact and sliding resistance algorithms and on extensions of the
graphics, user interface and adaptive algorithms specifically related to this project.

2. Design, development and performance of Phase I of the verification experiments, ori-
ented toward testing the numerical models of nonelastic surface asperities in contact3 with a rigid flat.

3. Verification of the finite element asperity models by comparison with analytical and
experimental results. The numerical predictions were compared with existing analytical
solutions for selected simplified cases (Hertz problem) and with the experimental results
obtained for fully nonlinear, elastoplastic contact problems.

3 4. Introductory tests of the complete homogenization procedure, which are based on a
combination of numerical models of the asperity with statistical homogenization, to
predict the response of random surfaces to contact and friction loads. Comparisons
with existing simplified asperity-based models (Greenwood-Williamson [44]).

U 1.3 Outline of the Report

This report presents the results of the second year of effort on this project., as well as a brief
compilation of the most important results of year I. In particular, Section 2 presents a study
of statistical methods of homogenization of interface parameters. Of particular interest are
such issues as extraction of surface statistics from profilometric data, calculation of an asper-
ity distribution for random surfaces, and the practical calculation of expected macroscopic
parameters from a microasperity analysis. In Section 3, a detailed formulation of the bound-
ary value problem representing the deformation of a surface asperity is developed. This
formulation includes elastic and viscoelastoplastic material properties, damage modeling,
a nonpenetration condition on the contact plane, and boundary conditions resulting from
adhesion forces and sliding resistance of the interface. Section 4 presents the background
of .he adaptive finite element technology developed for the analysis of the deformation of
a microasperity. A general background of the hp-adaptive finite element methodology is
discussed in this section, together with a detailed presentation of the numerical algorithms
used for the solution of elastic and viscoplastic contact problems.

The above theoretical part of the report is followed by examples and tests of the mi-
croasperity analysis. In particular, Section 5 presents some basic tests of numerical models of
viscoplastic material behavior. Then, in Section 6, finite element models of asperity response

are verified by comparison with the Hertz solution and with experimental measurements per-
formed for custom-shaped asperities. This section is followed by an introductory example of a
complete homogenization, and comparison is made with the classical Greenwood-Williamson
contact model. Finally, in Section 8, a research forecast is presented for the third year of the
project.

* 3I



1.4 Presentations and Publications

Our research related to new models of contact and friction was presented at the 113th ASME
Winter Annual Meeting, Anaheim, California, November 8-13, 1992.

The following papers were published or submitted for publication in 1992:

1. Tworzydlo, W.W., Becker, E.B., and Oden, J.T., "Numerical Modeling of Friction-
Induced Vibrations and Dynamics Instabilities", in Friction-Induced Vibration,
Chatter, Squeal, and Chaos, Ibrahim, R.A. and Soom, A., editors, ASME Publi-
cations, New York, 1992, pp. 13-32.

2. Lee, C. Y., and Oden, J.T., "Theory and Approximation of Quasistatic Friction and
Contact Problem", to appear in Comp. Meth. Appl. Mech. Engng., 1992.

3. Oden, J.T., Ainsworth, M.. and Lee, C.Y., "Local A Posteriori Error Estimators for
Variational Inequalities," International Journal for Numerical Methods in Partial Dif-
ferential Equations, (in press).

4. Oden, J.T., Lee, C.Y., and Ainsworth, M., "Local A Posteriori Error Estimates and Nu-
merical Results for Contact Problems and Problems of Flow Through Porous Media'.
Nonlinear Computational Mechanics-State of the Art, P. Wriggers and W. Wagner,
eds., Springer-Verlag, (in press)

5. Lee, C.Y. and Oden, J.T., "A Posteriori Error Estimation of hp- Finite Element Ap-
proximations of Frictional Contact Problems with Normal Compliance.- International
Journal of Engineering Science, (in press).
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U
3 2 Asperity-Based Models of Contact and Friction

3 One of the major missions in tribology is ý,he development of constitutive models of frictional
interfaces. Throughout the decades a variety of approaches and types of models have been
developed. They can be classified into several groups, including:

# models based on experimental observations,

* microasperity-based models,

e phenomenological models developed from basic principles of mi-chanics, and

* models of the type related to plasticity theory.

It should be noted here that this distinc'ion is only of a general nature and most of the
models presented in the literature combine, in some sense, features of more than one of these
groups.

In this project we focus on the development of new asperity-based models of contact and
friction. These models are aimed at the development of constitutive equations of frictional
interfaces via the statistical homogenization of the deformation of surface asperities subject
to contact with an opposing surface. The advantage of the asperity-based models is that
they provide good quantitative insight into the phenomena occurring at the interface and
predict additional information hardly available from the experiment-based laws, such as the
surface plasticity indices, nmicrofracture indices, etc.

The first contact model that was constructed to predict the true contact area can be
found in a paper by Abbott and Firestone [1], in which the contact surface was simulated in
a network of spheres that are truncated upon indentation into a hard flat. By knowing the
hardness of the softer of the two materials in contact, an estimate of the true contact area
could be made, assuming perfectly plastic deformations.

An important advance in development of asperity-based models of contact is represented
by the pioneering paper of Greenwood and Williamson [44], in which the rough surfaces were
viewed as a randomly distributed population of elastic asperities with randomly distributed
asperity heights. Each asperity was assumed to be spherical and elastic and its deformation
properties governed by the Hertz solution for elastic contact. Experimental evidence was

provided to support the assertion. now widely held by tribologists, that for, -,-,."ly isotropic
engineering surfaces, a Gaussian distribution of asperities heights generally exists. In such
models, there are no microfrictional effects on the asperities, such effects leading to second-

order changes in contact pressure, a result established nearly two decades earlier by Mindlin
[63]. In a related paper, Greenwood and Tripp [431 showed that contact of two rough surfaces
with Gaussian distributions of asperity heights on which asperity contacts were misaligned
was equivalent to a single elastic surface with a Gaussian distribution of asperity heights
impending on a rigid flat. The use of such statistical representations of surface topography
has since become a popular approach in modeling both elastic and inelastic contact.

* 5



IThe Greenwood-Williamson model was based on the assumption that only the asperity
height was a random variable, and that the radius R of each peak was constant. Several
generalizations of such random topography models appeared in the literature of the 1970s.
The paper of Whitehouse and Archard [99] extends the random-asperity models to include
random heights and curvatures, and Nayak [67] provided a general approach to random sur-
face modeling using notions of joint probability distribution functions. In this same vein, we
mention the work of Bush, Gibson, and Thomas [23], who derived a joint probability distri-
bution density function for random asperity heights and curvatures of a random population
of elliptic paraboloids in elastic contact with a smooth rigid flat.

Such random-microtopography models that employ a deterministic function for asperity
peak shapes are called asperity models. One source of possible inconsistency in such models
has to do with the fact that a Gaussian distribution of asperity heights and curvatures
for a given asperity shape may lead to a non-Gaussian cumulative probability distribution
of the surface height, an unrealistic result for most "engineering surfaces." This problem
was addressed by Hisakado [48] and Hisakado and Tsukizoe [49], by assuming a Gaussian
PDF (Probability Density Function) for surface heights, with a given deterministic asperity
shape, and then deriving the PDF for peak heights. Hisakado [48] assumed a paraboloidal
asperity shape and Hisakado and Tsukizoe [49] a conical shape. Francis [41] points out that
the Hisakado models may lead to unrealistic PDFs for asperity heights, since they may be
strongly dependent on the asperity shape and may become negative for paraboloidal and
conical shapes.

Extensions of asperit -based models to microcontact deformation laws involving elasto-
plastic deformations were first contributed by Hisakado [48]. Halling and Nuri [46] account
for plastic deformation of the interface by assuming that a rough surface deforms elastically
while contacting a nonlinearly elastic flat, representing strain-hardening, with each micro-
contact defined by a fully-plastic spherical indentation. Significant generalizations of these
types of asperity models can be found in the detailed studies of Francis [41], who intro-
duces the notion of the sum surface, discussed later in the present work. This enables one
to model Gaussian engineering surfaces with asperity shapes that a paraboloidal only, at
their vertices, but which have random heights and curvatures, using the joint PDF of Navak
[67]. Moreover, Francis [41] also takes into account elastic and fully plastic deformations,
with strain-hardening, using functions determined empirically from spherical indentations
of various metals. We also mention that an extension of the Greenwood-Williamson model
of spherical asperities with Hertzian elastic contact, constant radii, and random heights to
cases in which a transition to perfectly plastic deformations occur was recently proposed by
Chang, Etsion, and Bogy [26-28].

We note that most of the references cited above dealt with attempts to model either

contact without sliding motion, or purely static or quasi-static friction effects.

The asperity-based models of frictional interfaces are constructed in five basic steps:

1. Perform a statistical analysis for the surface profile (profiles),

I 6



Im
1• 2. calculate the surface statistics (distribution of surface height, gradient, and curvature)

from one or more set of profile data,

3 3. calculate, from surface statistics, the probability distribution and density of surface
asperities of different heights and (possibly) peak shapes,

4. calculate, by analytical or numerical methods, responses of representatives of a family
of surface asperities of different shapes to prescribed load programs,

3 5. calculate, from asperity data and the probabilistic distribution of asperities, the ex-
pected values of the interface response (normal and tangential forces, damage, etc.) to
prescribed load programs. This response characterizes constitutive properties of the3 interface.

Several variations of this basic scheme may be derived for random and deterministic surfaces,
isotropic or anisotropic finish, etc. In this case a general classification of surfaces presented
(after Nayak [66]) in Fig. 2.1 is helpful.3 For practical purposes, it is reasonable to consider the following three classes:

(i) Gaussian isotropic surfaces,

I (ii) Gaussian anisotropic surfaces, and

(iii) other surfaces, in particular deterministic surfaces obtained by special finishing tech-
niques.

The flowchart illustrating the homogenization procedure for these three groups is pre-
sented in Fig. 2.2.

I
U
U
I
U
I

I
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Figure 2.2: Flowchart for statistical homogenization of interfaces.
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The details of these procedures will be discussed later. Here it is important to observe
that for Gaussian isotropic surfaces it suffices to gather profilometric data along only one
profile on the surface and to consider asperities of axisymmetric peak shapes. For Gaussian
anisotropic surfaces, however, one needs at least three nonparallel profiles and asperities of
different principal curvatures and orientations. Finally, for non-random surfaces, a full two-
dimensional map z = z(x, y) of the surface may be needed, and asperities may have various

tI. deterministic shapes, depending on the surface finish.

2.1 Microstructure of the Frictional Interface

We begin by considering the contact of two deformable bodies, I and II, over a nominal
contact area A0 , as illustrated in Fig. 2.3. An element of unit nominal contact area is isolated
for study, as indicated in the figure. The average stress vector V over the unit contact area
has components of force P and Q normal and tangential to the unit area, respectively. The
situation is equivalent to that of two typical coupons of surface material, one taken from the
material near the contact surface of each body, pressed together with a force P normal to
the tangent plane at the center of the coupon interface and simultaneously subjected to a
shear force Q tangent to the plane. The bulk deformations of bodies I and II are ignored.
our aim being only to characterize the mechanical properties of the contact interface. The
nominal unit surfaces in contact are, for the present, assumed to be initially flat and parallel
to one another.

It is standard practice to depict the approximate profile of rough engineering surfaces
with a profilometer or stylus, drawn across the surface. which generally yields a jagged profile
with an exaggerated vertical scale of the type shown in Fig. 2.4(a). We consider two such

opposing surfaces 1 and 2 which are to ultimately come in contact. Refrence planes defining
the mean asperity height of each surface profile are established, and we characterize the
shape of each profile by introducing functions z, and z2, given the height of asperities above
the respective reference planes, i.e., the functions zi = zi(x, y), i = 1,2, with (x, y) a point in
the parallel mean-height reference planes, define the profiles of the rough material surfaces
1 and 2, respectively. The distance h between planes is the separation of the surfaces, and
the distance between actual opposing material points is denoted s. Thus, at a point (x. y)
on the reference plane, we have

s = h - z (2.1)

where z is the sum surface (see Francis [41]),

Z = Z1 + Z2

Francis has pointed out that, from the fact that the sum z of the surface heights appears
in the geometric relation (2.1), the situation is equivalent to that of a single deformable
surface of height z = ZI + Z2 approaching a rigid flat, as suggested in Fig. 2.4(b).

Clearly, the undeformed surfaces overlap whenever

s(x,y) < 0

10
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As the normal load pressing the surfaces together increases, the separation h decreases
and at each minimum of the function s a microcontact nucleates and expands due to local
deformation of the surfaces.

It is of importance to note that arguments presented by Francis [41] are of a purely
geometric nature. From a mechanical point of view, two major objections can be raised
here:

1. The sum of two asperities (say, spherical) in contact with a rigid flat is not mechanically
equivilant to two spheres in contact-see Fig. 2.5.

In particular, the distance-force curves P = P(a) for the two models are different.
Moreover, the "asperity" peak on the sum surface corresponding to two spheres is not
spherical. It can be shown, however, using the Hertz solution, that these differences
vanish when the ratio of asperity radius R to the contact radius r goes to infinity
(relatively smooth surfaces at moderate loads).

2. In the case of contact with friction, the sum surface approach will not model the friction
component due to the interlocking of asperities. Similarly as above, the importance of
this effect diminishes with increasing surface smoothness.

I1
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I Figure 2.3: Contacting bodies and coupons near the contact interface subjected to an average

stress vector of magnitude E.
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Figure 2.4: (a) Profiles of opposing rough surfaces, and (b) microtopography of surfaces andI the equivalent sum surface z.
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In view of these remarks, the sum surface approach seems to be correct and justified
for typical engineering surface finishes at moderate loads. Note that this condition is also
required for the satisfaction of the assumption that separate microcontacts do not interact
mechanically and that contacts do not merge.

It is well known in tribology that techniques used to produce engineering surfaces usu-
ally produce a Gaussian distribution of the surface heights z-. Moreover, the sum z of two
Gaussian surfaces is also Gaussian; indeed, Tallian [89] points out that if z1 and z2 are not
exactly Gaussian, their sum surface will be closer to Gaussian than either surface. If the
shape of an asperity is assumed to be paraboloidal, as have been done by several authors.
then the peak heights and curvatures are correlated random variables, with the result that a
Gaussian distriution of heights and curvatures may lead to a cumulative probability distri-
bution of surface heights which is non-Gaussian. This issue has been studied by Hisakado
[48], Hisakado and Tsukizoe [49], and by Francis [41], who assert that if the peak shape is
paraboloidal only at its vertex, then the ensemble of peaks can be made to conform to the
Gaussian distribution.

3 2.2 Statistics of a Random Surface

There are several methods of homogenization that can be found in the literature. Few
have been effectively used for describing nonlinear frictional phenomena. As one possible
technique we describe a general approach inspired by the works of Lonquet-Higgins [56-58],
Nayak [67], and Francis [41]; see also Chang, Etsion. and Bogy [26-28]. To fix some of
these ideas, we note that for a given asperity profile, one defines the autocorrelation function
C(X, Y) for the random variable z = z(x, y) (the surface height),

C(X.Y) = lim J z(x,y)z(x + X,y + Y)dx dy

I and the power spectral density P(k., ky) as its Fourier transform,

3 P(kxI k!,) = I¾ f 0j' C(X, Y) exp [-i(Xkx + Y'k,)]dX d

The power spectral moments are

=mi k,)kxkt dk, dk, (2.2)

and the r.m.s. roughness a is the variance,

a 2 = moo = C(O, O) = P(kz, ky) dk., dk,

I A convenient representation of a continuous random surface is of the form [57,67]:

z(x, Y) = C C,, cos (xk-,, + yk-, + r,,) (2.3)
n=1
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I where amplitudes C, wave numbers k-, and kyn, and phase E, are random variables. It is
assumed that there are an infinite number of wave vectors in any area dk.,dk, and that e has
a uniform probability density in the range (0, 27r). The power spectral density is related to
representation (2.3) by 1

P (kx , ky) dkydk -E Cn

the summation being over all terms with (k,,, kn) lying in the area dk.dk, around (k,, ku).
The power spectral moments Mpq can then be expressed as

mpq = (2.4)
2

Similar definitions and representations as above can be introduced for arbitrary surface
profile z(s), s being a parameter on the surface. Of particular interest are spectral moments
of a profile mi0 , n 2 , and rn4 .

I 2.3 Calculation of Surface Statistics From Profile Data

Information about the statistics of a two-dimensional surface can be effectively obtained
from profilometric data for one or more profiles on the surface. This greatly simplifies the
homogenization procedure because both experimental measurements and statistical post-
processing are much easier for one-dimensional profiles. In this section we discuss details of
these computations for both isotropic and anisotropic surfaces.

3 2.3.1 Profiles on Gaussian Isotropic Surfaces

It was shown by Lonquet-Higgins [56, 57] and Nayak [67] that for random isotropic surfaces
the mean surface height and non-zero spectral moments are expressed in terms of mean
profile height and profile spectral moments:

3 '-surfae = Zprofile

MOO •= MO

M 2 0 = t 0 2 = M 2

3M 22 = rM04 = M 40 = M4

Therefore, in order to calculate surface statistics it suffices to perform measurements for one
profile on the surface. The spectral moments of the profile can be calculated in several ways:

* from the definition as moments of power spectral density

9 from statistical postprocessing (sampling) of profile data

e from counting zeros and extrema of the profile

16I,



Calculation from definition:
mi= f P(k)k'dk

200

where k is a wave number and ýI(k) is a power spectral density. This particular method is
rather expensive because it requires evaluation of the autocorrelation function and the power
spectral density as its Fourier transform.

It is much easier to calculate profile spectral moments if one reinterprets them as standard
deviations o,, , & of profile heights -, slopes Zi, and curvatures 5, respectively:

o -- 0.2

m 2 = 0-

M 24 _= . & 2

Assuming that the profile data was sampled at n points separated by the interval 2\s (see
Fig. 2.6), the profile statistics can be calculated from the following sampling formulas [16]:

3 (a) mean height, slope and curvature:

in

U/ z=1

- n

- in

n i=1

(b) variations of height, slope and curvature:

1 '

.2 n 2

n 2
J~ -2 I i=1

The values of first and second derivatives can be calculated from a second order approxi-
mation of the profile shape, discussed in Appendix A.1 in reference [94]. Note that the mean
slope and mean curvature of a perfect Gaussian profile should be zero. For real profiles they
may slightly differ from zero. Also note that for the above procedure, shorter wavelengths3 can be automatically filtered out by appropriate selection of the sampling interval As.
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An ingenuous alternative way of calculating m 2 and m 4 was proposed by Lonquet-Higgins
[57], see also Nayak [67]. The densities of zeros and of extrema of the profile are expressed
through spectral moments as:

Dzero -(m2) ½ =

Dextr =1 (M4)½ = 1ia

By zero point we mean here the point where z(s) = 5. The counting of zeros and extrema
can be performed simultaneously with the sampling procedure described above. Then, after
calculation of the variation o, variations of slopes and curvatures can be obtained as:

lr = r0Dzero

,+= &dDextr

In practice, both sampling and counting methods can be easily implemented in the same
sampling program. Practical comparisons of these procedures are presented in our previous
report [94•.

Another parameter necessary for the homogenization procedure is a density of peaks on
the surface, defined for homogenous surfaces as:

Dp = lira- NP

dx-ý. dA
dy--o

where dA = dx dy is the surface area and Np is the number of asperity peaks within this
area. The density of surface peaks can be calculated from profile parameters [67] as:

1 m 4
Dp- m2

2.3.2 Profiles on Gaussian Anisoti'opic Surfaces

Basic statistical information for anisotropic random surfaces consists of nine moments of the
power spectral density: mOO,... m, i 4 0 . However, since the properties of the surface do not
depend on the orientation of the x, y axes, only certain invariant combinations appear in the
probability distribution of the surface statistics [58,67]. These invariants are:

1. mOO

2. Mn0 2 + M 2 0

3. m 2omo 2 -

4. M 4 0 + 2M 2 2 + in0 4

19
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5. m 4 0 mo4 - 4m 1 3 m 3 1 + 3m22

6. (M40 + n 2 2 ) (n 2 2 + Mn0 4 ) - (Mn3 1 + Mr13 )

7. {M4o (m22mo 4 - n1 3 ) - in 31 (m 3imoM4 - m 13 m 22 ) + in 22 (in 31 in1 3 - Mn22 )

From three profiles in three nonparallel directions Oi, i = 1,2, 3 nine parameters can be de-
fined: too(), rn2 (), in 4 (i), iZ = 1,2,3. However, since mo(l) = MO( 2 ) = mo(3 ), then these three
profiles define seven constants-invariants described above. This means that three nonpar-
allel profiles suffice to define surface statistics for Gaussian anisotropic surfaces. (Detailed
equations will not be derived here.)

2.4 Calculation of Asperity Statistics From Surface Statistics

The primary idea of asperity-based interface models is to calculate interface parameters
(normal force, friction force, etc.) for a family of asperities of certain deterministic shapes and
to obtain expected values of these parameters for the interface from a statistical distribution
of asperities. This requires the calculation of probability density of surface asperities. For
random surfaces, this probability density can be expressed in terms of surface statistics. This
problem will be addressed in this section.

2.4.1 Asperity Statistics for Gaussian Isotropic Surfaces

For Gaussian isotropic surfaces two random variables are assumed to govern the distribution
of asperities: asperity peak height zP and mean curvature K. The joint probability density
function of these parameters was derived by Nayak [66] and recast in a different form by
Francis [41]. Here we present the formula due to Francis:

v/- 2'1 132•n 7(7)- 1 02-•f7- 1 + e-2' • (•2 -'2  2 )

where

= -nondimensional peak height

= vi/-.5 nondimensional peak curvature

,3 = v ---=-. wavelength spectrum parameter
Olor

The wavelength spectrum parameter varies for random surfaces between 0 and 1; zero
corresponds to the widest wavelength spectrum (asperity heights and wave numbers are
not correlated), and one corresponds to the narrow spectrum (longer asperities have bigger
heights). Note that deterministic surfaces may have 0 > 1, see Section 2.6.1.
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2.4.2 Asperity Statistics for Gaussian Anisotropic Surfaces

For Gaussian anisotropic surfaces the representative asperities are no longer of axisymmetric
shape. Instead, one should consider asperities with elliptic horizontal cross sections, shown
in Fig. 2.7b.

The peaks of these asperities can be characterized by four parameters:

1. zp - peak height

2. K1 , K 2 - principal curvatures

3. a - orientation of the main axis of curvature

Equivalently, peak height zP and three Cartesian curvatures (second derivatives of z) Kx, KXy,

C. can be used. The joint probability density function based on all these parameters should
be defined as fý,,, (6,ih, 72, a). In principle, this function can be defined from surface
statistics, in particular spectral moments m 00 ,... ,M 4 0 [58,67]. To the author's knowledge,
no such formula is presently available in a closed form.

2.4.3 Asperity Statistics for Deterministic Surfaces

Some special types of finish may produce surfaces of non-Gaussian random distribution or
deterministic distribution. For such arbitrary surfaces the distribution of asperity peaks
cannot be obtained from profile data and need to be calculated directly from a surface map.
In this section we present a simple sampling procedure to calculate asperity statistics from
surface data.

We assume that:

"* The surface is homogenous.

"* The function z(x,y) (surface height) for the surface is given. This can be obtained
from two-dimensional sampling, holography or other methods.

"* Asperity peaks are characterized by the peak height zP and mean curvature S.

The probability density of asperity height and curvature fz,,(zp, K) can be obtained from the
following sampling procedure: Cover the domain Q with a regular mesh of points (xi, yi). i =

1, n presented in Fig. 2.8.

The mesh spacing h can be defined so as to filter out high-frequency noise. The sampling
is performed by looping through the points (xi, yi), i = 1, n and for each point:

1. Check if the point is a peak or near a peak within resolution h. The peak is identified
as a peak if its height z(xp, yp) is greater than all its nearest neighbors (eight for interior
points). Alternatively, more elaborate criteria may be used.
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Figure 2.7: Typical asperity: (a) isotropic random surface, (b) anisotropic random surface.

22



Iz

I
I

I

Fiur 2: Sapigo ritaysrae

II
I
I
I
I
I

m Figure 2.8: Sampling of arbitrary surface.

m 23

I



1 2. If the point is a peak, then calculate the second derivatives z,,,,zy and z,.. Here
simple finite difference formulas may be used or a generalized minimization procedure

* as presented in Appendix A.

The mean surface height and standard deviation of the surface height are calculated as:

n.
2 --1 0"2 -2 i=1

n-i (zi _ -;)2

The joint probability density of asperity peak heights and curvatures can be calcu-
lated after locating all the peaks by dividing the range of peak heights and curvatures
[ZpminZpmpmax] X [Nnrinnmax] into area elements AzpAtz (see Fig. 2.9).

Then for each area element with a center point (zpi, Kj) define

fZ f,(zpi, tcj) = K.IPn P(i2jiI~1*

Here Np is the total number of peaks and np(i,j) is the number of peaks within the area
element AzpAK, identified by:

Zpmi. + (i - 1)Az < zp < Zpmin + i A

roin "+ (j - 1)AK _ hp < K minj K

The values above define the discrete values of the joint probability density function of as-
perity peak heights and curvatures. This function may then be regularized by an application
of appropriate approximation techniques. A similar procedure can be used if one chooses
to characterize asperity peaks with more than two parmeters, such as z7, K 1 , K2 and a for
anisotropic surfaces.

2.5 Calculation of Macrocontact Expectations of Interface Pa-
I rameters

Once we know the probability distribution of asperity heights and shapes as well as the
values of any parameter X for single asperity, it is possible to calculate the expected value
of X for the interface. This procedure varies somewhat depending on the classification of
surface type. In this section we present a detailed procedure of the expectation calculation
for Gaussian isotropic surfaces and outline its extensions to other surface types.
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2.5.1 Expectation Calculation for Gaussian Isotropic Surfaces

For Gaussian isotropic surfaces, the following parameters are needed to calculate the expected
value of the macroscopic interface parameter X:

i) NP The number of peaks within the contact area A0 .

ii) f,,(, q) Probability density of asperity peaks of (nondimensional) height
ý and mean curvature q. By a simple change of variables one

can define ft(zp, K).

iii) X(zP, K,a, d) The value of parameter X for different peak heights z, and cur-
vatures c, subjected to a normal approach a and sliding distance

d.

iv) 0', 6, a Deviations of profile heights, slopes, and curvatures used to

nondimensionalize peak heights and curvatures.

The expected value of X per asperity is calculated as

E (X(a, d)) = J X(zp, K, a, d)fý7 ?(zp, K)dKdzp (2.5)

and the macrocontact expectation of X is
X a d) = : E( a )

Note that even for Gaussian isotropic surfaces there exist asperities of non-axisymmetric
cross sections. However, due to isotropy, it suffices to consider only axisvmmetric represen-
tatives of certain mean peak curvature x. In this project we choose the asperity to be a
cosine hill defined in a local coordinate system as:

z(x, y) = C cos kx cos ky

For this asperity the peak height and mean curvature are defined as

Zp = C

S= Ck2

The above shape is consistent with a generic representation of a Gaussian surface presented in
formula (2.3). This is different than approaches presented to date in the literature, in which
asperity peaks were usually assumed to be spherical or paraboloidal. This was because these
works were based on analytical solutions for asperity deformation. such as Hertz' solution.
In this work we are modeling the asperity by the finite element method, so it is possible to
use the model which does not suffer from inconsistencies of spherical or paraboloidal asperity
peaks.

Although for Gaussian isotropic surfaces the probability density of asperity heights and
curvatures is analytic, the values of X(zp, K,.) that we obtain from finite element com-
putations are not. Therefore the expected value of X must be calculated using numerical
quadrature. This quadrature was implemented under the following assumpt. ions:
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(a) The doniain of integration is truncated to the subregion [Zm,, ]X [rtamin, Kmax],

where the probability density f47 is large enough to effectively contribute to the
final integral E(X). This region is defined adaptively (see Section 2.6.2).

(b) The parameter values X(zp, K,...) are given (calculated by FEM) for certain
selected values of peak heights and curvatures in the domain of integration. These
points are not necessarily regularly distributed within the domain of integration.

The numerical procedure for the calculation of the integral consists of the following steps:

1. Divide area [Zmin, Zmaj] x [min, temx] into area elements Azz x Art (see Fig. 2.10).

2. Calculate the integral by looping over cells and applying numerical quadrature (trape-
zoidal, Simpson, Gauss, or any other) according to the formula

E(X) = E [E {X (zp(.), K(. ... ) An (Z() (')W" -A K}] (2.6)
i=l 101=1

where i is the number of integration cells, a is the number of quadrature points within
a cell, and w, is the corresponding weight factor.

Note that this integration requires the value of X at integration points (Zp(a), K(,)) within
each cell. Since it may be difficult to perform finite element analysis for values of zp and
, corresponding exactly to all the integration points, these values are calculated from the
original data points using the error minimization procedure presented in our previous report
[94]. The quadrature rule currently implemented for integration are the trapezoidal and
four-point Gauss rule.

Note that the above procedure introduces error due to truncation of the integration
domain and due to numerical integration. This leads to a rather unwelcome result that even
for constant X, the calculated expected value E(X) would be different than X. In order to
compensate for this error, we additionally calculate the integral of the probability density
(which should be one):

N r
E= An f• (-),p,) wAZAK

Then the corrected value of expectation of X is calculated as:

E(X) = E(X)/I (2.7)

This procedure assures that for constant X the expected value Et(X) is equal to X.

2.5.2 Expectation Calculation for Random Anisotropic Surfaces

As mentioned previously, for anisotropic Gaussian surfaces one has to consider asperities of
random peak heights zp, principal curvatures K1 and K 2 , and orientations of the principal
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Figure 2.10: Numerical integration of expectation value E(X).

* 28



axis a. The calculation of expected values of the interface parameters is similar to equation
(2.5):

E E(X (_-P,.aI)K 2 , a, a...)-f 0=

L I 1 '0 1o j2 ' X (Zp, ICI, Kc2, a... fý '7 (Z , i.1 2,a ddcIdC 2dzp (2.8)

Note that presently there exist no closed form solution for the probability density fh7,77o0

of asperity peaks of random heights, principal curvatures and orientations. Also note that
in order to span the integration space, one would need to obtain finite element solutions for
a large family of asperities, corresponding to various combinations of z-, i1, K2 , and a. This
would be a very expensive task computationally, and will not be considered in this project.

2.5.3 Expectation Calculation for Deterministic Surfaces

The calculation of expectation values E(X) for non-random surfaces follows essentially the
same numerical procedure as for Gaussian isotropic or anisotropic surfaces. Depending on
the surface type, the peak height zp, curvature K and other parameters may be selected to
represent typical asperities. The joint probability density f,7 ...(zp, K,...) can be obtained
from surface sampling as discussed in Section 2.4.3.

2.6 Numerical Verification of Statistical Postprocessing

The homogenization procedures discussed in the previous section for Gaussian isotropic
surfaces were used as the basis for the implementation of specialized software for this purpose.
Verification tests of this software were presented in our last yearly report [94]. In this report.
we used the above approach to simulate Greenwood-Williamson contact model (Section 7).

3 Deformation Mechanics of a Single Asperity

We now focus on the analysis of a typical asperity in contact with a rigid flat. The asperity is
a body of revolution, symmetric about its z = x3-axis, and subjected to adhesion pressures q
on its exterior surfaces that are not in contact with the rigid flat, and to contact pressures due
to its indentation into the rigid flat (see Fig. 3.12). The equations governing the deformation
of the asperity are discussed below.

3.1 Momentum and Geometric Equations

The momentum equations for the asperity are:

= ij,• = 0 (3.9)
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U where aii is the Cauchy stress tensor at a point x = (x1,x 2 ,X 3 ) E Q, Q being the open
material domain of the asperity and 2 ,,j is the divergence of the stress aij.

In rate-dependent viscoplastic applications a rate form of the equilibrium equations is
used:

i rjj= 0 (3.10)

where the dot denotes the time derivative.

Geometric equations express strains in terms of displacements:

_ _1

-i = (u1,3 + u1,i)

Strains can be decomposed into elastic and nonelastic strains:

~ij + +i
I 2ie) 1(3

Similarly as for the momentum equations, the rate form of geometric equations will also
* be used:

1

3.2 Constitutive Equations

Surface asperities for typical engineering surfaces consist of the same material as the bulk
body with possible contaminations and structure change from oxidation and surface finish
processes. Therefore, for general surfaces a variety of material classes should be considered,
such as elastic, hypoelastic, elastoplastic, etc. In this project two major material classes are
considered, namely:

9 linearly elastic (isotropic or anisotropic) for some metal surfaces, ceramics, composites,3 and hard rubbers, and

o viscoelastoplastic models for metallic surfaces and modern ductile ceramics.

I 3.2.1 Linearly Elastic Constitutive Models

3 The general linearly elastic constitutive relations are given as:

o'ii = Eijkl•ki

where Eijkl are the components of the fourth order elasticity tensor. It has up to 36 inde-
pendent coefficients for general anisotropic materials. However, for most material classes,3 the number of material coefficients is much smaller and, for isotropic materials, there are

30



I

I only two coefficients, E and v. The specific forms of tensor E for various materials are well
known and will not be presented here.I
3.2.2 Elasto-Viscoplastic Constitutive Model With Damage

We now describe the Bodner-Partom constitutive equations [10,11] used in the modeling of
viscoelastoplastic asperities. The elastic-viscoplastic analysis is based on decomposition of
strain rates

where superscripts (e) and (n) denote elastic and nonelastic strain components, respec-
tively. The constitutive relations are

U ij = Ei-kl(ýkl (3.12)

3 A nonelastic deformation is governed by the flow rule:

= fij(O'j,Zk,wk)

I gi(=ij, Zk)

where fij,gi and hi are constitutive functions, zi are internal state variables, and wi are
damage variables. These functions and state variables characterize the viscoplastic response
of the material with continuum damage effects.

In the particular version of the Bodner-Partom theory applied in this work, the nonelastic
flow rule is of the form:

*Asij

where sij are the deviatoric components of a stress tensor

sij = O.ij - Oijbij

I The current value of parameter A is given by

A 2=)--1D2exp Z - ))j ,A > 0

3 where J 2 is the second invariant of a deviatoric stress tensor
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J2 = sijSij

I2

Do is a limiting strain rate in shear, n is a material constant and z and W are state variables
which evolve during deformation. In particular, z is the hardness variable, which represents
viscoplastic hardening (or softening) of a material. The variable w is the damage variable.
This variable represents weakening of the material due to nucleation and propagation of
microscopic voids and cracks in the material. The micro-cracks considered here are in the

Srange of 0.01 mm in length. The rupture criterion is w = 1, which corresponds to the
saturation of the material with voids. Alternatively, a single crack may grow to a size on the
order of 1 mm. In the latter case, crack is too big to be treated in a continuum sense, and

I its propagation should be followed using the methods of fracture mechanics.

In the framework of materials science the value of w is usually interpreted as ratio of the3 area of voids to the total area of a certain cross section of a sample:

Avoid
I -A

The state variables z and w evolve according to the specific equations of the viscoplastic
* theory:

1. Evolution equations of hardness variable

* The internal state variable z consists of isotropic and directional components,

1. =- ýI +• Z D

The evolution equation proposed for the isotropic hardening component [10,11,24,25] is

(t) = mi[[zi - z?(t)]W(t) - Aiz1 [z(t) z2] (3.13)

with the initial condition, z'(O) = zo. In the first term, z, is the limiting (saturation) value
of z , m, is the hardening rate, and the plastic work rate is

I p• -= (•
-- ijA"ij

which is taken as the measure of hardening. z2 is the minimum value of z' at a given
temperature, and A1 and r, are temperature dependent material constants. The evolution
form of the directional hardening component (Refs. [10,11,24,25]) is defined as

zD(t) = Oi 3(Oui()

where uij are the direction cosines of the current stress state,

uij(t) = aij(t)/[aklaktj2 (3.14)
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I The evolution equation for O1ij(t) has the same general form as that for isotropic hardening
but has tensorial character,

ij = rM2 [Z3 Uij(t) - /322(t)]IV"(t)

- A2z1 {[k,(t)/k(t)] }VijW(t)Z,

where
vi 3(t) = /3ij(t)/[I#kL(t)I#kl(t)I½

and
Ii3 (0) = 0

As in Eq. (3.13), m2 is the hardening rate. A2 and r2 are temperature dependent material
* constants.

2. Evolution of damage3 The damage parameter consists, in general, of isotropic and directional components,

W=W I + ")D

* The evolution of isotropic damage proposed in reference [11] is of the form

I d'= I [ l (3.15)

In the above P and H are material constants, Q is the stress intensity function. given by

I Q= [Ao.+ B :V3J, + CI+]

I where oam+x is the maximum principal tensile stress, If is the first stress invariant (nonneg-
ative) and J2 is the previously introduced second invariant of deviatoric stress.

A, B, C, and v are material constants. A, B, C must satisfy the condition

A+B+C=1

II Clearly, the actual proportion of these constants selects the factor for stress state which is
most important in the development of internal damage.

The initial condition for isotropic damage is w'(0) = 0. In practical analyses the coef-
ficient v is of the order 10 (compare ref. [111). Thus, when SI (metric) units are used in
the analysis, the factor Q as well as the constant H reach extremely high values, beyond the
limit of real number capacity on some computers. Thus, for numerical analysis, equation
(3.15) was recast in the equivalent, but more convenient form:

S[In the but onveIent
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where:

= a BV3-2 + CI+

H- = (H)-J

Sec

P = P"' s e-'c

The additional advantage of this formulation is that both Q and H are in the stress units
(MPa) instead of the somewhat cumbersome (MP,,)V. The directional damage is defined in
a manner very similar to directional hardening, namely

D= D

where utj are directional cosines defined in equation (3.14) and the components of a tensor
w D evolve according to equation

=l 7-~[f I [In } DQU2

where q and M are material constants. The initial condition is

D = 0
Willy

Note that there are several problems with practical application of directional damage, relia-
bility of the above model and conducting experiments relevant for the evolution of necessary
parameters. Even the extensive experiments presented in references [11,24,25] did not pro-
vide all the necessary data and, hence, the damage model is usually limited to the isotropic
damage.

3.3 Boundary Conditions

The asperity can be viewed as a protuberance of a deformable half space (see Fig. 3.12).
It is subject to boundary conditions resulting from its support, contact with the opposing
surface, adhesion and sliding resistance.

3.3.1 Support Conditions

If the asperity is viewed as the protuberance on a deformable half space, the support condi-
tions are defined as zero displacements at infinity:

lim u=0
X3<0

34



I In practical computations we will usually consider only a certain section of the bulk
material surrounding the asperity. Then the support condition will be:

U u =0 on Fu

* on the cut-off boundary F,,.

3.3.2 Contact Condition

Let the position of the rigid flat (see figure 3.2) be defined by:

I * a point Po(xo, yo, zo) which belongs to the flat, where xo, y,, zo are its coordinates in
the initial configuration,

I * unit vector N, normal to the flat,

9 displacement w of the flat in direction N.

Separation of material point in the deformable body from the flat is then given by the
* following formula

I where:
S- initial position of a m aterial point,

Su - displacement of this point.

The condition that the asperity can not penetrate the rigid flat is:

I >s>0 onr

The actual contact region is Fr = Ix E F, s(x) = 0}. The difficulty associated with the
contact condition in the above form is that it results in the weak formulation of the problem
in the form of variational inequality, rather than the equation. In order to avoid difficulties
involved in solving variational inequalities, the contact condition is usually regularized. In

this work we will use the penalty-type regularization of the form:

t' = t'(a) on r,

where a = -s is the approach (penetration) and t' is the value of traction normal to
the flat which defines resistance of the surface to penetration. Because we will be using
rate formulation in viscoelastoplastic analysis, it is beneficial to introduce a continuously
differentiable penalty function, for example in the form presented graphically in Fig. 3.11:

I



0 if a.<0

-H a2 if 0 < a <

H (a if a>,

Here H is a large number (normal stress) and z is a small number (penetration). The
above penalty function guarantees continuous derivative of the normal traction with respect
to a, which greatly improves practical performance of the numerical computations.

3.3.3 Adhesion

In the case of the surface asperity, an important contribution to the total normal force comes
from adhesion due to intermolecular reactions (see Fig. 2.3).

According to the theory discussed in our previous report [94], the traction boundary
condition due to adhesion is effective outside the contact zone:

t' t=q(s) if s> 0

t' .=0 ifs =0

where ta is the value of normal traction aijNjNi resulting from adhesion. The actual
value of the pressure q is a strongly nonlinear function of the separation s between surfaces
and according to the Lennard-Jones theory discussed in reference [65] is defined by:

q~) 8A7
q(s) =~ [( - ()9 (3.16)

1 where e is an intermolecular distance (generally e = 0.3 - 0.5nm) and A-,/ is the surface

energy of adhesion.

3.3.4 Shear Resistance

I In addition to normal stresses on the contact zone, formation of metallic bonds provides
shear resistance of the junction. The corresponding surface traction can be expressed in the
general form:

tF = tsS + tTT
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where S is a vector parallel to the rigid flat and T = N x S. It is convenient to assume
that the vector S defines a direction of prescribed sliding motion of the surface.

The components of the traction vector depend upon the normal load (or, equivanlently
penetration) and relative sliding distance:

ts = f(a, bs)
tT = f(a, bT)

where
a - penetration
bs, bT - relative sliding on the plane in the S and T directions correspondingly

bs = 6 - U S
bT = -u . T
6 - prescribed sliding of the flat in the direction of vector S (see figure 3.12)

The specific form of functions f (.,.) depends on the actual model of shear resistance
on the asperity tip. For example, shear resistance governed by regularized [53,59,92,93]
Coulomb's friction law is defined as:

f(a, b) = ittq¢(b)

where pi is a coefficient of friction and 0 is a regularization function, defined as:

it friction coefficients
- penalty parameter in normal contact (see section 3.3.2)

b -1 for b < Eb

2b b2

2-+--+ for Eb < b<OEb E

2 b b2

2----~- for O<b<• 6

Eb ~bE

for b > cb

I where cb is a small number (regularization parameter). The form of the regularization
function € is shown in figure 3.13.

Note that in practical modeling of surface asperities the shear resistance is often defined
by the strength of metallic junctions between asperities. The detailed forms of corresponding
resistance models will be studied in year 3 on this project.

3.3.5 Initial Conditions

Smooth functions u°(x) and z°(x) are prescribed such that for x E Q,
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3 Figure 3.12: Surface asperity in contact with a rigid flat (a section).
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Figure 3.13: A regularization function 0

3.4 Variational Formulation

In order to obtain a weak formulation of a boundary-value problem we introduce the space
of functions

V = {v E [wmq(f)]N , v(X) -_ 0 as jXIl- __+ oo

where Q2 is a computational domain, N is the dimension of the physical space (2 or 3), and
WM'P(Q) is the Sobolev space, where specific values of m, p and q depend on the particular
form of constitutive equations.

Multiplying the equilibrium equation (3.10) by a test function and integrating over Q we
obtain the weak form of the rate equilibrium equations: .

ifn 6ij,jvi ri = 0 V v E V

After the substitution of the constitutive equations, application of the divergence theorem
and a grouping of terms the following variational problem is obtained:
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I

Find a displacement rate field t --+ iA(, t) E V such that

j Eik•i•k,A.D,.d +j(icfNi + iS 2 + TTi)vds =

(3.17)

-= EijkCl vid dQ + tivids V v E V

Note that the values of the rates of normal and tangential stress on the contact zone
need to be expressed in terms of displacements using formulas presented in previous sections
(contact condition, and sliding resistance). After doing this, we obtain a more detailed
formulation of the problem:

EjEJkIV~,ijik,jdQ) + jvi(BJ + BS. + B T)QIds ds

j j + j v'(GN + Gs + GT) ds+ (3.18)

f Viti ds V v E V

where

Bý = {(a, bs)NiS + U(a, bs)S, Sj

BT = 2L(a, br) N, Tj + 2L(a, br) Si T,

GI C Z

=ý [2L(a, bs) w t + '9f(a, bs) -IS,~

GT 2L (a, b) tT,

S--- traction from static boundary conditions.

The rates of nonelastic strains J() can be obtained from the relevant constitutive theory
(see Section 3.2.2). For elastic materials they are identically equal to zero.

For elastic materials it is also possible and computationally more efficient to use a total
formulation of the problem which is as follows.
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Find a displacement field u(x)EV, such that

I j Eijktvi'juk,'dS1 + vi 1 NiNjujds =(

Vi1 iN(W-XkN+Pok-Nk)ds+viids 
VvEV V(3.19)

I 3.5 Solution Method for Elastic Contact Problems

Formulation of the contact problem is nonlinear even in the case of contact with an elas-
tic body because the area of contact depends on displacements (F1 = Fr(u)). Generally,
variational equation (3.19) for u can be written in the following form

I L(u) - R = 0, (3.20)

where L stands for the left-hand side and R for the right-hand side.

This equation is obtained from (3.19) by requiring that it be satisfied for any v belonging to
V. Because the condition is nonlinear it results in a nonlinear system of equations. In aim to
solve the problem effectively, Newton-Raphson iteration technique was used. The idea of the
method is to substitute a nonlinear functional by its linear part. Linearization is made at a
series of points. Each point is the solution of the problem linearized at the previous point. If
the series is convergent it is convergent to a solution of the nonlinear problem. For a simple
case of a nonlinear equation with one unknown two steps of Newton-Raphson method are
shown in Fig. 3.14.

Basic formulas of the Newton-Raphson method are presented below. Let us assume that
we know a field u,• which is an approximate solution of the equation 3.20. u0 - 0 can be
assumed. First two components of the Taylor series evolution of left hand side of equation
3.20 give

I L(u') - R - gradu[L(u') - R]Su -_ 0

Assuming that bu = un+ - u we obtain

I )R + graduL(un)(un+1 - u") = 0

Equation 3.20 is a linear equation for Un+l. We use this equation to compute a sequence
of approximate solutions u1,... ,u. The process is stopped when 1IuM - uM-11 and
IIL(uM) - RI are small enough.

For contact with elastic bodies, equation (3.20) has the following form

3 j2 6 u d + vU! 6 (P ok .1Vk-Xk .Nk+w ) Nlds+ j
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Figure 3.14: Graphical presentation of construction of a series uo, ul, u 2,... convergent to a

solution u" of equation f (u) = 0.
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Variations were evoluated neglecting dependence F, = F1(u). The above linearized prob-
lem is solved by the standard FEM.

In order to provide automatic control of the performance of nonlinear procedures, an
expert system-like approach has been applied. This application is based on our previous
research on automation of computational procedures [4], and employs several heuristic rules
to monitor and control the performance of nonlinear iterations. While in the original im-
plementation discussed in reference [4] the specialized knowledge engineering software was
used to develop the expert system, in this project the essential features of the expert system
were coded in FORTRAN and included in the code. The expert system is activated at each
time step after completing a prescribed number of iterations (sufficient to estimate trends in
error histories). The decisions of the expert system are used to control the solution process
and obtain a converged solution at minimum cost.

I 3.6 Solution Method for Viscoplastic Contact Problems

Formulation of the problem in this case is time-dependent.

The strategy employed in the solution of this problem is as follows: with the initial
distribution of stress, temperature and internal variables specified use the rate form of the
equilibrium condition (Eq. (2.23)) to obtain the nodal displacement rates. Then integrate
the constitutive equations forward in time at the element Gauss integration points. With
updated value of the stress, temperature and internal variables at the new time. the equilib-

I rium equation is solved again. This sequence of determining the nodal displacement rates,
then advancing the constitutive equations in time is continued until the desired history of
the initial boundary-value problem has been obtained.3 Thus, the algorithm proceeds through the following steps:

1. At time t, initialize oij, Zi for each element;

2. Calculate 0 = fij(o'ij, Zk) for each element;

3. Assemble and solve (K]& = F;

4. Calculate iij for each element, i = [BJ_;

U 5. Calculate &ij for each element, & = [Eli - P;

6. Calculate Zi for each element, Zi = gi(0ij, Zk);

7. Integrate arj, Z forward for each element to get aij and Zi at t + At,;

8. If t + At, < tfinal go to 2, otherwise stop.

The computational method above has been presented for a constant time step -ts.
Computational experience by several investigators (see refs. [7,8,54]) indicates that a very
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I small time step can be required becaus - -if the "stiff" nature of the ordinary differential
equations describing the internal state variables. To gain improved efficiency and reliability
a variable time step algorithm has been implemented. The basic idea of this variable time
step algorithm is presented below for a scalar evolution equation.

The solution is advanced using a predictor-corrector scheme. The predictor phase consists
* of an Euler step:

= f(y, t) (3.21)

The solution is advanced using a predictor-corrector scheme. The predictor phase consists
* of an Euler step:

P

Yt+At = Yt + -Atyt (3.22)

t+At= f (YPt + A t) (3.23)

I An error indicator E [15,24] is then computed from

2 j t+ -t (3.24)

I The error indicator is next compared with a preset error criterion and if the criterion is
met, the time step is small enough to proceed to the corrector stage. Otherwise, the predictor
phase for Eqs. (3.22)-(3.23) is repeated with a smaller time step. For the viscoplastic
evolution equations with damage modeling, the control variables used to calculate the error
indicator were the components of a stress tensor aij, internal state variables Zi, and the
damage variables wi, with the maximum of these selected as the controlling error.

The corrector phase is the modified Newton scheme,

I lv = (,a), +

I C+At = Yt + Ltyavg

A flowchart depicting the adaptive scheme is shown in Fig. 5.18.

4
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4 Finite Element Analysis of Contact Problems with
Friction

4.1 General Information About the 3D Finite Element Code

The development of asperity modeling capabilities was based on existing, state-of-the-art
three-dimensional adaptive finite element kernel code, which consists of several separate
modules organized around the common data structure and execution supervisor. Figure
4.15 shows a general structure of the code directories. The most important modules are:

* an object-based data structure designed specifically for the h-p adaptive finite element
method,

e an execution supervisor controlling the overall execution of the computations,

* pre- and postprocessors,

* an adaptive package,

* linear equation solvers, and

* a solver for a specific boundary value problem (in this case, asperity modeling).

Importantly, the elements of the finite element data structure, adaptive package, graphical
interfaces and linear equations solvers were designed to be applicable to a general class of
problems, and relatively easy customizable to specific problems in solid mechanics or fluid
mechanics. Below, selected modules of the above kernel are discussed in more detail.

* Object-based Data Structure

A new state-of-the-art data structure was designed and implemented in the kernel to avoid
typical limitations of traditional finite element codes, such as:

* fixed size common blocks and arrays,

I * predefined limits on problem size,

e element information spread throughout memory in variety of arrays.

The object-based data structure was coded in C computer language, which allows for
dynamic memory allocation and more flexible handling of objects and structures. Typical
examples of objects handled by this data structure are:

* elements,
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1 Figure 4.15: A general finite element code structure
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i * nodes,

39 boundary condition data,

* set of degrees of freedom, etc.

i The major advantages of object-based handling of these structures are listed below:

i .the objects are created only when needed,

* all related information is contained in one structure, and closely packed in memory,

i *all the objects are automatically saved/restarted,

* the memory is reused when object is deleted, 3ay during mesh refinement.

It is of importance to note here, that the elements in the above data structure are
grouped and colored in order to facilitate vector and parallel processing. The basic idea of
this vectorization and parallelization is presented in figure 4.16. Importantly, all the elements
in a batch are of the same type, so that the generation of element stiffness matrices and right-
hand sides can be effectively vectorized by putting loop over elements as the innermost loop.
On the other hand, since the elements in different colors have no common nodes or sides, the
generation of element of element matrices and assembly for different colors can be performed

i in parallel.

Adaptive three-dimensional finite element meshes

i The finite element kernel is designed to handle h-p adaptive finite element meshed for
three- and two- dimensional problems. By h-p adaption we understand a finite element
technique, wherein the elements can be automatically subdivided into smaller elements (h-
refinement /unrefinement) and the polynomial order of approximation can be locally in-
creases or reduced. A major advantage of properly designed h-p mesh is that it can achieve
a higher order of accuracy with much less degrees of freedom than traditional finite element
methods. Moreover, the optimal mesh is designed automatically by adaptive procedure
driven by appropriate error estimators.

For three-dimensional problems, anisotropic h-refinement can offer a wide improvement in
computational effort over more conventional isotropic refinement schemes. This is primarily
true because anisotropic refinement allows for selected refinement in the directions of interest
only (i.e., directions of high error). Thus, anisotropic refinement may greatly reduce the total
number of unknowns in many problems, in turn reducing the required computational effort.

Isotropic refinement implies that an element is identically refined in each local direction.
For a hexahedral element, an isotropic refinement is a division into two along each of the three
local directions, which results in eight sub-elements. In contrast, an anisotropic refinement
of a hexahedral element is a division into two along a single local direction, resulting, of
course, in only two sub-elements. Thus, if solution phenomena is oriented with respect to
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I loop over colors

loop over groups

loop over batches

m loop over integation points

Ipossible compute element data

parallel vector get problem coefficients for
execution code (MCOEFF, BCOEFF) batch

assemble 1.h.s. and r.h.s.

endloor,

endloop

endloop

endloop

I

color - not connected elements

Igroup - "topologically" identical elements
batch - optimal vector lengthI

I
3 Figure 4.16: Vectorization and parallelizaton for groups and colors
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I a particular local direction, then anisotropic refinement allows for degrees of freedom to be
introduced only in the direction which actually reduces the total error. Isotropic refinement,
on the other hand, would have introduced degrees of freedom in all directions, many of them
providing little improvement to the overall solution. Anisot-opic refinement can, therefore,
provide a higher level of accuracy than isotropic refinement using the same number of degrees

* of freedom.

Several examples of h-adapted meshes in three dimensions will be shown in Section 6.
Note that the mesh refinement introduces several theoretical and numerical complications
into the algorithm, such as:

* constrained or "hanging" nodes between elements of different refinement level,

* propagation of constraints and possible "deadlocks" in the case of directional refine-
ments for complex geometries,

e complications of unrefinement due to one-to-two approximation rule.

3 Detailed discussion of these issues is beyond the scope of this report. It is sufficient to
note, that before application of the above kernel to asperity modeling all these difficulties
have been successfully resolved and the existing kernel offers operational unique automated

* directional refinement capability for three-dimensional hexagonal meshes.

Interactive user's interface and graphical postprocessing

have been implemented in the adaptive kernel to enable user-friendly operation of the code
and viewing of three-dimensional result. The interactive graphic interface is based on a
window environment, with a menu-driven selection of options. A sample view of the screen
with several windows open is presented in figure 4.17.

The graphic interface can be customized for specific applications, such as contact and fric-
tion modeling, so that the solution process and essential data can be controlled interactively
by the user.

The most important feature of the graphical user interface is a three-dimensional inter-
active postprocessing capability. For two-dimensional models, such visualization is rather
trivial as all of the computational domain is always visible and it is a simple matter to zoom
and/or pan through the mesh to closely review the results. The real challenge comes from
the need to visualize phenomena in three-dimensional domains where most of the numerical
data is actually hidden from the observer and one needs to enter the domain to view the3 local structure of the solution.

The postprocessing capability implemented in the kernel is capable of displaying solution
obtained on structured and unstructured meshes, with both h-refinement and p-enrichment
present in the mesh. The package is fully interactive and operates efficiently on high-end
workstations. The basic graphic features displayed include:

I .mesh plots,
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Figure 4.17: Sample screen with interactive window environment
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* isosurfaces of selected quantities,

* slicing planes with overlaying isolines,

* deformed configurations,

* three-dimensional cursor for picking pointwise values of the solution,

All the above displays are available with interactive translation, rotation and zoom op-
tions, hidden line removal, panning, etc.

Importantly, the graphics package is designed to take advantage of specialized graphic
hardware and software available on many platforms. The primary platform for the package
is the SGI Iris family, which is also a primary platform in this project. Alternatively, X-
windows graphics is supported, which is operational on most Unix workstations.I
4.2 Formulation of a Structural Deformation Problem in the 3D

* Code

In the second year of the friction project, the 3D kernel was customized to solve contact
problems. It was supplemented with over 5,000 instructions. They enable to run specialized
drivers when a contact problem is to be solved. The drivers solve the contact problem using
either total formulation or incremental formulations (see section 3.4). The first one uses3 Newton-Raphson iterative method and calls the FEM linear solver at each iteration step.
The second driver uses Euler predictor corrector integration method with automatic time
step control and calls the FEM linear solver twice at each time step.

I To solve solid mechanics problems with contact, additional customization of the kernel
FEM code had to be implemented. They define, in a special format, coefficients of the volume
and boundary integrals introduced in previous section. As regards the contact condition,
it was assumed that contact can take place at any point of the boundary on which static
boundary conditions are applied. Therefore, while the integrals over this part of boundary
are evaluated, the program examines whether an integral point is in contact with the flat.
If penetration is greater than zero, then integrals corresponding to contact and friction are
added to the coefficients of the stiffness matrix and the right-hand side.3 If a problem with contact is to be solved then an additional data file is read. This addi-
tional data defines initial position and orientation of the rigid flat, prescribed displacements
of the flat, material constants, regularization parameters and error tolerances. The results3 of each iteration or time step are printed on screen and to a disk file.

To enable automatic generation of meshes, five additional programs were prepared. They3 generate customized grid files for:

* 3D axisymmetric asperity (cosine hill),

I a 3D axisymmetric asperity (spherical),
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9 2D asperity (cosine hill),

* 2D asperity (cylindrical),

• 2D trapezoidal asperity.

The first two programs make use of an in-house GAMMA3D mesh generator . All of
them provide generation of meshes with first and second order of geometry approximation.

5 Basic Verification of Numerical Models

To confirm reliability of the code and material models several numerical tests were done.
Selected tests are described in this section.

The first test was carried out to verify the total formulation. It was uniaxial tension of
an elastic body. It was performed for both 3D and 2D problems with both second and first
order geometry approximation. The results of tests were compared with analytical solutions
of the tension problem. The errors of computed displacements and stresses were less then
0.1 percent.

The objective of the next group of tests was to verify incremental formulation of the
viscoplastic problem. They were carried out for alloy B1900+Hf at temperature 871°C.
Material constants as well as experimental results for this material are given in reference
[10]. For Bodner-Partom model they are as follows:

Do = 104 s-1 = 0.270 MPa-'

n = 1.03 M2 = 1.52 MPa-1

Z = 2400 MPa r = r-2 2
Z2= 2400 MPa A1 = A2 = 0.0055 s-1

z = 3000 MPa E = 142 GPa
Z3= 1150 MPa v = 0.0805

Some of these tests are listed below:

(a) Solution of the uniaxial tension for an elastic body by the incremental formulation.
The results were the same as obtained by the total formulation.

(b) Solution of the uniaxial tension for an elasto-visco-plastic body. The results were
compared with an experiment presented in reference [55]. Certain discrepancy of
results was observed (see Fig. 5.19). This discrepancy was caused by an erroneous
value of the Young modulus given in reference [55]. After a correction of Young
modulus (E = 132 GPa) the numerical and experimental results agreed satisfac-
torily (see Fig. 5.20). The test verified mathematical and numerical models for
this simple loading (uniaxial tension).
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(c) Next three tests were carried out in order to examine how the computer program
works for more complicated loading histories. The results of those tests were not
compared neither with experimental nor with analytical solutions but they look
reasonable and they confirmed reliability of the computer code. The tests were
the following:

o Uniaxial cyclic tension and compression Fig. 5.21.
o Uniaxial loading for 5,000 s and relaxation for next 5,000 s Fig. (5.22).
o Loading for 1,000 s and creep for next 1,000 s Fig. 5.23.

The above basic tests verified the formulation of the contact problem as well as its
applications in the computer code. It was possible to perform further tests and comparisons
of results.

I
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6 Verification of Numerical Models of Asperity

Numerical modeling of response of surface asperities to contact and friction loads is one of
basic components of the new asperity-based interface models developed in this project. In
order to verify correctness of our finite element asperity simulations, we performed several
tests and comparisons, in particular:

* modeling of elastic sphere in contact with a rigid flat, (Hertz problem). Analytical
solution is available for this problem [47,90],

* numerical modeling and experimental measurements for custom-made asperities with
strongly pronounced nonelastic properties.

Details of these tests are presented further in this section.

6.1 Elastic Sphere in Contact with a Rigid Flat

In order to verify the contact algorithm and the nonlinear solution procedure, a finite element
solution was obtained for the contact of elastic sphere with a rigid flat. The finite element
solution of this problem was compared with theoretical solution due to Hertz [47,90]. For
a given sphere of radius R and prescribed normal displacements of the flat equal w, the
theoretical predictions of the contact radius r, contact area A and total load P are given bv:

r =w
A = 7rRw

3(1-1/) 
2W

The above problem was solved numerically using the following data:

R = 1.0
E = 1000.
v = 0.3
w = .001, .002, .005, .01, .02
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Figure 6.25: Isosurfaces of the vertical displacement for the Hertz problem, w=.02
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I Due to a localized nature of the contact, the finite element mesh was defined only for a
section of the sphere around the contact zone. The problem was solved using the Newton
procedure combined with adaptive mesh refinement. An example of the final refined mesh
obtained for w=.02 is shown in figure 6.24 (deformed configuration is displayed and only
boundary elements are shown for clarity). The same mesh with isosurfaces of vertical dis-
placement is presented in figure 6.25, the slicing plane, with stress o',,, is shown in figure 6.26,
and the error indicators projected on two slicing planes are displayed in figure 6.27.

The results obtained numerically compare favorably with numerical predictions. A de-
tailed comparison of theoretical and numerical results are shown in table 6.28, and the
graphical comparisons of predicted contact area and total load are shown in figure 6.29.I

I
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ELASTIC SPHERE IN CONTACT WITH A RIGID FLAT

E = 1.0000E+03 nu= 0.3000 R= 1.0000

THEORY

Displ Cont. rad. Area Load Max. pres.

0.00200 0.04472 0.006283 1.3105E-01 3.1286E+01
0.00500 0.07071 0.015708 5.1803E-01 4.9468E+01
0.01000 0.10000 0.031416 1.4652E+00 6.9958E+01
0.02000 0.14142 0.062832 4.1442E+00 9.8936E+01

NUMERICAL

Displ Cont. rad. Area Load Max. pres.

0.00200 0.04237 0.00564 1.5400E-01 4.3600E+01

0.00500 0.07001 0.0154 5.5400E-01 5.4000E+01
0.01000 0.10092 0.0320 1.5400E+00 7.9200E+01
0.02000 0.14809 0.0689 4.5000E+00 1.0840E+02

Figure 6.28: Comparison of theoretical and numerical results for the Hertz problem
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6.2 Experimental Studies of Models of Asperity

In order to verify numerical simulation of nonelastic behavior of asperities, several experi-
mental measurements were performed and then compared with numerical predictions.

These tests included simple tension and compression problems designed to verify nonelas-
tic material constants for aluminum, as well as contact tests for two types of custom-made
asperities. In this phase of experiments, which we refer to as Phase I, custom asperities were
chosen in order to eliminate random surface factor from the comparisons. In Phase II, which
will be performed in the next year of the project, real random surfaces will be considered.

The objective of this Phase I experimental study is to study the deformation of contact
surface asperities and to verify the analytical prediction by experimentation. In design of the
experimental study, it is initially conceived that the test is to be carried out under a small
normal load (500 Lbf) condition. A controlled surface asperities are machined onto both
surfaces of an aluminum block. In the test arrangement, the aluminum block is sandwiched
between two hardened steel blocks with smooth surfaces, and the steel-aluminum-steel block
assembly is compressibly loaded to approximately 500 Lbf. The deformation of asperities
on the aluminum block is monitored during loading. After completing the normal loading,
a horizontal load is slowly applied to the aluminum block until the block begins to slip.
An estimation of the coefficient of friction can thus be made by using the measured normal
and horizontal loads, and be compared with that from the analytical prediction. A test
apparatus is built for this purpose, and tests are carried out with this apparatus. After
reviewing the test results, it is decided that the deformation of surface asperities on the
aluminum specimen is too large for the purpose of model verification. The shape of asperity
is changed, and the tests are carried out under a normal load of approximately 2.000 Lbf.
The results from both arrangements are reported in this section.

6.2.1 The Test Apparatus

A sketch of the apparatus is shown in Fig. 6.30. An aluminum (6061, T4) block of 1' x 1' x
0.25" is sandwiched between two steel blocks of the same dimension as shown in the figure.
The V-shaped grooves of angle 45 deg, pitch spacing of 0.1 inch, and depth of 0.125 inch
are machined with a specially designed cutter on both surfaces of the aluminum block to
simulate the surface asperities. A sketch of the grooves is shown in Fig. 6.31. The surfaces
of the steel blocks are machined smooth and (water) quench hardened to RC-30. It should
be mentioned that, due to the angle of the cutting tool and the pitch spacing, the tips of the
grooves are not in a plane, the heights of tips vary alternatively as shown in the photograph

(Fig. 6.31) to be discussed in a later section.

A normal load is applied to the specimen assembly through a mechanical screw jack from
the bottom of the apparatus. The normal load is monitored with a small "load transducer"
of capacity 500 Lbf. The normal deformation of the simulated asperities on aluminum block
is measured with a "proximate sensor" with an operation range from 0 to 0.1 inch. The sand-
wiched specimen assembly is first installed in position, and an initial load of approximatelyI50 Lbfs is applied to the specimen prior to "zero adjustment" of the recording instrument

68



I0
-U,.

xcc

0 0" a FINITE ELEMEN

0

I oo

0. 10 0.20 .0.30
DISPLACEMENT X 10xx1

a)

I LO

I °-

I0 THERETICAL

a FINITE ELEMEN

* 0

0.10 0.20 0.30
DISPLRCEMENT X 1O0ul

b)

Figure 6.29: Comparison of theoretical and numerical results for the Hertz problem; (a)
displacement versus contact area, and (b) displacement versus contact load

69



(an X-Y plotter). A total normal load of 500 Lbs is then applied to the specimen at a rate of
approximately 10 Lbf per minute. After the normal load has reached 500 Lbf, a horizontal
load (by lead blocks and beads) is slowly applied to the aluminum block until the block starts
to slide. The horizontal load is monitored with a ring-shaped load transducer (laboratory
built) as shown in Fig. 6.30.

Note that even with very precise calibration of the test apparatus, certain compliance
or "setting in" occurs during loading and pollutes the measurements. This is especially
true in case of high loads and very small displacements considered in this experiment. It is
a standard practice in experimental tests to discard the initial part of the load curve and
appropriately translate the remaining part. In this section, we present results in the "'raw"
form, but numerical comparisons refer to corrected graphs.

6.2.2 Tests Results From the Above Apparatus

Two tests are carried out. A representative force-deformation plot is shown in Fig. 6.32. It
is seen that there is an appreciable amount of plastic deformation of the surface asperities
on the aluminum block (neglect the bulk deformation of both aluminum and steel blocks)
when the block assembly is loaded to 500 Lbf. A horizontal force is then slowly applied to
the aluminum block. It is visually observed that the aluminum block starts to slip when the
horizontal load reaches 108 Lbf. Since there are two contact surfaces between the aluminum
block (with asperities on both surfaces as shown in Fig. 6.31) and steel blocks (with smooth
surfaces) in the test arrangements, the nominal coefficient of friction is (108 /2)/500 = 0.108.

6.2.3 Deformation of Asperities Under a Larger Normal Load

The asperities shown in Fig. 6.31 have pointed tips, the deformation of tip is difficult to
calculate. It is then decided to change the geometry of asperity as those shown in Figs.
6.31(b) and 6.31 (c). In Fig. 6.31 (b), the asperity is modeled as a 45-deg grooved with
a truncated tip. In Fig. 6.31 (c), the asperity is modeled by spaced circular rods. The
force-deformation relationship for the specimen with asperities as shown in Fig. 6.31 (b)
and 6.31 (c) are measured. The test arrangements are the same as that described in the
previous section. Since the maximum load in these test are much higher than 500 Lbf, the
tests are carried out and the representative force-deformation curves are shown in Figs. 6.33
and 6.34, respectively. A photograph of the cross-section of the deformed grooves is shown if
Fig. 6.35. It is seen that only the alternate grooves were deformed. There are seven grooves
on each surface of the aluminum block, therefore only eight (four on each surface) of them
are deformed. Since the maximum horizontal load required to move the aluminum block in
this exceeds the capacity of the ring load cell used in previous section, the horizontal pulling
test has yet to be carried out (we need to build a new load cell and loading frame).

Finally, a test for the compressive property of the aluminum used in this study is carried
out. The stress-strain curve from a 0.25" dia x I" long aluminum (6061, T4) specimen is
shown in Fig. 6.36. Again, the test is carried out at a slow loading rate (approximately 20
Lbf per minute).
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A similar test under tensile stress state was also performed, and the results are shown in
Fig. 6.37.

1/2" wall thickness
500 lb.steel ring

steel block strain gages

Proimpaeetsensor-| Al. block with_
displacement sensor asperities load cell

steel block holder

I . dead load

I__ ' table

(' _2 screw-jack

Figure 6.30: A sketch of test apparatus (not to scale).
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Figure 6.31: Different models of asperities studied experimentally.
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Figure 6.35. A photograph of deformed asperity

6.3 Numerical Simulation of Experimental Measurements

6.3.1 Viscoplastic Uniaxial Stress State Numerical Test

The aim of this test was verification of viscoplastic material constants for aluminum 6061
T4. Bodner-Partom model of viscoplastic materials uses 14 material constants. However, for
aluminum alloys at room temperature the model can be simplified and 'then only 7 material
constants are of primary importance. Their values obtained from reference ]for slightly
different heat treatment (T6) are listed below:

E = 73.9 GPa
V = 0.33

mO = 450 MPaIi = 550 MPa
m, = 0.12 MPa,'3D = 108

n = 5.0

In order to verify these values, the results obtained with these constants were compared
with simple compression and tensio'n experimental tests. The test of uniaxial compression
failed to provide any useful data because bifurcation of the specimen wvas observed and
the state of stresses was not uniaxial. The adequate verification of material constants was
possible using the results of tensile test. They indicated that the Young modulus was in fact
smal~er and the yield limit greater than assumed initially (the differences reached about 10
percent). In order to have a more accurate model the Young modulus and the kinematic
parameter were changed. The new values are
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I E = 65.0 GPa
n = 5.8

So modified material constants were used in further computations. Fig. 6.38 shows the
plot of stress-strain relation for initial and modified material constants in comparison with
the experimental results.

6.3.2 Viscoplastic Cylindrical Asperity

I Aluminum cylinder was used as a model of a "macro asperity". Numerical and experimental
tests were carried out. It was assumed that the cylinder can be analyzed as a 2D case.
Original mesh used for discretization of a fragment of a circle is shown in Fig. 6.39. After
the first computation was completed the mesh was automatically refined. It is shown in Fig.
6.40. The viscoplastic results obtained at both meshes as well as an elastic solution for the
first mesh are compared in Fig. 6.41. The conclusions are that:

* behavior of the specimen under applied loading is almost elastic,

e viscoplastic solution is reasonable because it gives smaller values of the contact force,

* *the second mesh gives results which can be treated as a final numerical solution (the
difference between solutions obtained at coarse and fine meshes is small.)

The numerical and experimental solutions are compared in Fig. 6.42. Note that the
experimental results have been rescaled. Instead of the total force - total displacement
relation measured in the experiment, Fig. 6.42 shows force per unit length for upper half-
cylinder (2 times less than measured). Moreover, metric units were used.

It can be observed that the numerical results compare favorably with experimental mea-
surements. Recall, however, that the experimental data were translated, to correct for
settling in the apparatus (see Section 6.1).

6.3.3 Viscoplastic Custom Surface Model

Comparisons of results for a model truncated V-shaped of asperity are described in this
section. Two meshes which were used for discretization of this specimen are shown in Fig.
6.43 and 6.44. Numerical results for both meshes are shown in Fig. 6.46 and 6.45. While for
the cylindrical model the behavior of the material was almost elastic (maximum nonlinear
strain was less than 0.4%), in this case the influence of yielding was significant. Maximum
nonlinear strain was about 80%. It means that at least locally solution is beyond the theory
of small strains which we use. The comparison of numerical results and experimental ones
is shown in Fig. 6.47.

A good agreement of results can be observed for both models of asperity.

Some of unevitable sources of discrepancy are the following
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* error of experimented measurements,

3 e error of discretization of the domain,

e error of modeling of inelastic behavior of the material,

3 * unknown deformation history of the specimens, prior to the experiment,

* errors of time-integration and other numerical errors.

Comparison of numerical and experimental results as well as the basic numerical tests
* allow to state that the mathematical model and the computer code work properly.
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I Figure 6.39: Original discretization of the cylinder

Figure 6.40: Refined discretization of the cylinder
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* 7 A Simple Asperity-Based Contact Model

The results of elastic solution of spherical contact problem were used for initial tests of
-- a complete statistical homogenization procedure. In particular, we compared our finite

element based predictions with a classical asperity-based contact model due to Greenwood
and Williamson [(i]. This is one of historically first asperity-based models, derived under
the following simplifying assumptions:

3 * the tips of asperities are spherical,

9 all asperities have the same radius of curvature R,

I e asperity height is a random variable with Gaussian distribution,

9 contact is elastic and described by the theoretical solution of the Hertz problem.

Note that although this model is much simpler than the ultimate objective of this project
(random asperity height and curvature, nonelastic deformation, etc.), it provides a very good
initial test for the homogenization procedure. Importantly, our modeling of this problem
differs from Greenwood's approach in that:

I *solution of elastic contact problem has been obtained from finite element modeling,
rather than from Hertz theory,

& expected values of contact load and area have been calculated using numerical quadra-
ture, instead of analytical integration.

I Comparison of our results with Greenwood-Williamson theory will provide a good mea-
sure of errors introduced by these numerical techniques. Recall, that we are using numerical
methods is this work because for real engineering surfaces there exist no closed analytical
solutions of the contact problem and of the homogenization procedure.

The simulation of the Greenwood-Williamson model was performed for the following set
* of parameters:

R = 0.1414 mm
ap = 7.07106 x 10' mm
1 = 0.3
E = 321.7335 kG\mm2

n = 300 peaks\mm 2

where R is the radius of asperity tips, ap is the standard deviation of asperity height and n is
the surface density of asperity peaks. The results are presented in figure 7.48, which shows3 respective comparisons of load-separation and load vs.contact area curves. It can be seen
that the difference introduced by numerical modeling of asperity and numerical integration of
expectation values is within acceptable bounds (note that these differences could be further
reduced by application of finer meshes for the asperity contact problem.)
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I 8 Conclusions and Research Forecast

In the second year of this project the effort has been focused on the development of a
finite element code for modeling nonelastic surface asperities, as well as on the design and
performance of the verification experiments. This was followed by theoretical and numerical
verifications of the numerical models of surface asperities. To model the deformation of
an asperity, a generic h/p adaptive finite element kernel (developed at COMCO) has been
customized for the caalysis of viscoplastic solids in contact with a rigid flat, including elastic
or viscoplastic material properties, contact and sliding resistance.

The comparisons of numerical predictions of asperity response with available analytical
solutions and experimental measurements confirms the correctness of the formulation and of
the finite element solution procedure. In fact, it appears that the actual experiments require
more caution than the numerical solutions, because of calibration difficulties and pollution of
the results by the compliance of the apparatus. These experiences will be taken into accountI in the third year of this project.

The effort in the third year will focus on the actual development of the interface mod-
els through the statistical homogenization procedure, as well as on their verification and
applications. In particular, the following tasks are planned for the third year:

1. Evaluate the results of comparisons performed up-to-date and implement the necessary
corrections in the numerical code and in the experimental apparatus. Design and
perform experimental measurements for a random surface corresponding to a typical
surface finish (e.g. sand blasting).

2. Extend the finite element asperity modeling code to include selected models of adhesion
and sliding resistance valid for micro-scale asperities (up-to-date the effort has focused
on macro-scale asperities).

3. Combine the finite element asperity analysis with the statistical homogenization soft-
ware to develop new asperity-based models of contact, adhesion and friction. This
will include surfaces documented in the literature as well as the surface which will be

I studied in the experiment.

4. Evaluate the results of the above comparisons and identify possible sources of discrep-
Iancies.

5. Formulate a theory and methodology for the application of the new interface models in
the modeling of dynamic friction phenomena, such as friction in presence of vibrations
or self-exited oscillations in frictional sliding.

I
I
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